Study of Sterile Neutrino Contribution to Neutrinoless Double Beta Decay

Volume 9, Issue 4, August 2024     |     PP. 130-140      |     PDF (1448 K)    |     Pub. Date: August 31, 2024
DOI: 10.54647/physics140635    17 Downloads     816 Views  

Author(s)

Kaushlendra Chaturvedi, Department of Physics, Siddharth University, Kapilvastu-272202, India

Abstract
The sterile neutrino contribution to neutrinoless double beta (0νββ) decay has been first studied within a specific model with the two sterile neutrinos mixed only with the νe flavor state. In the present paper, we assume that in addition to the three conventional light neutrinos there exists only one Majorana neutrino mass-eigenstate νh, dominated by the sterile neutrino species, with an arbitrary mass mh, which may mix with all the active neutrino weak eigenstates νe,μ,τ. We study possible contribution of this νh neutrino state to 0νββ-decay via a nonzero admixture of νe weak eigenstate.

Keywords
Sterile neutrino, double beta decay, neutrino mass, PHFB model, nuclear matrix elements

Cite this paper
Kaushlendra Chaturvedi, Study of Sterile Neutrino Contribution to Neutrinoless Double Beta Decay , SCIREA Journal of Physics. Volume 9, Issue 4, August 2024 | PP. 130-140. 10.54647/physics140635

References

[ 1 ] Abdullahi, A. M., et al., “The present and future status of heavy neutral leptons”, arXiv.hep-ph/2203.08039.
[ 2 ] Canetti, L., Drewes, M., and Shaposhnikov, M., “Sterile neutrinos as the origin of dark and baryonic matter”, Phys. Rev. Lett., 110. 061801.1-6.Feb.2013. https://doi.org/10.1103/PhysRevLett.110.061801
[ 3 ] Drewes, M., Garbrecht, B., Gueter, D., and Klaric, J., “Testing the low scale seesaw and leptogenesis”, JHEP., 08.018.1-51. Aug.2017. arXiv.hep-ph/1609.09069.
[ 4 ] Drewes, M., Garbrecht, B., Hernandez, P., Kekic, M., Lopez-Pavon, J., Racker, J., Rius, N., Salvado, J., and Teresi, D., “ARS leptogenesis”, Int. J. Mod. Phys. A, 33. 1842002.1-46. Feb.2018. arXiv.hep-ph/1711.02862.
[ 5 ] Drewes, M., Georis, Y., and Klaric, J., “Mapping the Viable Parameter Space for Testable Leptogenesis”, Phys. Rev. Lett., 128. 051801.1-7. Feb.2022.
[ 6 ] Shaposhnikov, M., “The νMSM, leptonic asymmetries, and properties of singlet fermions”, JHEP., 08. 008.1-54. Aug.2008. arXiv.hep-ph/0804.4542.
[ 7 ] Boyarsky, A., Drewes, M., Lasserre, T., Mertens, S., and Ruchayskiy, O., “Sterile neutrino Dark Matter”, Prog. Part. Nucl. Phys., 104. 1-45. 2019. arXiv.hep-ph/1807.07938.
[ 8 ] Bamert, P., Burgess, C. P., and Mohapatra, R. N., “Heavy sterile neutrinos and neutrinoless double beta decay”, Nucl. Phys. B, 438. 3-16. Mar.1995. https://doi.org/10.48550/arXiv.hep-ph/9408367.
[ 9 ] Benes., P., Faessler, A., Kovalenko, S., and Simkovic, F., “Sterile neutrinos in neutrinoless double beta decay”, Phys, Rev. D, 71. 077901.1-4.Apr.2005. https://doi.org/10.1103/PhysRevD.71.077901
[ 10 ] Rath, P.K., Chandra, R., Chaturvedi, K., Lohani, P., Raina, P. K., and Hirsch, J. G., “Neutrinoless ββ decay transition matrix elements within mechanisms involving light Majorana neutrinos, classical Majorons and sterile neutrinos”, Phys. Rev. C, 88. 064322.1-13.Dec.2013. https://doi.org/10.1103/PhysRevC.88.064322
[ 11 ] Šimkovic, F., Faessler, A., Müther, H., Rodin, V., and Stauf, M., “0νββ-decay nuclear matrix elements with self-consistent short-range correlations”, Phys. Rev. C, 79. 055501.1-10. May.2009. https://doi.org/10.1103/PhysRevC.79.055501
[ 12 ] Onishi, N., and Yoshida, S., “Generator coordinate method applied to nuclei in the transition region”, Nucl. Phys., 80 (2). 367-376. May.1966. https://doi.org/10.1016/0029-5582(66)90096-4
[ 13 ] Dixit, B. M., Rath, P. K., and Raina, P. K., “Deformation effect on the double Gamow-Teller matrix element of 100Mo for the 0+ →0+ transition”, Phys. Rev. C, 65. 034311.1-10. Feb.2002. https://doi.org/10.1103/PhysRevC.65.034311
[ 14 ] Dixit, B. M., Rath, P. K., and Raina, P. K., “Erratum- Deformation effect on the double Gamow-Teller matrix element of 100Mo for the 0+ →0+ transition”, Phys. Rev. C, 67. 059901.1-2.May.2003. https://doi.org/10.1103/PhysRevC.67.059901
[ 15 ] K. Seo , “The Status of AMoRE 0νββ Experiment”, Talk at TAUP-2019 Toyama, Japan, (2019)
[ 16 ] Arnaboldi, C., et al., “A calorimetric search on double beta decay of 130Te”, Phys. Lett. B, 557.167-175. Apr.2003. https://doi.org/10.1016/S0370-2693(03)00212-0
[ 17 ] Pozzi, S., Talk at TAUP-2019 Toyama Japan, 2019.
[ 18 ] Barea, J., Kotila, J., and Lachello, F., “Limits on sterile neutrino contributions to neutrinoless double beta decay”, Phys. Rev. D 92. 093001.1-7.Nov.2015. https://doi.org/10.1103/PhysRevD.92.093001
[ 19 ] Argyriades, J., et al., “Measurement of the two neutrino double beta decay half-life of Zr-96 with the NEMO-3 detector”, Nucl. Phys. A, 847. 168-179. Dec.2010. https://doi.org/10.1016/j.nuclphysa.2010.07.009
[ 20 ] Arnold, R., , “Results of the search for neutrinoless double-𝛽 decay in 100Mo with the NEMO-3 experiment”, Phys. Rev. D 92(7).072011.1-23.Oct.2015. https://doi.org/10.1103/PhysRevD.92.072011
[ 21 ] Winter, R.G., “A Search for Double Beta-Decay in Palladium”, Phys.Rev.85.687.Feb.1952. https://doi.org/10.1103/PhysRev.85.687
[ 22 ] Arnold, R., et al., “Measurement of the 2ν𝛽𝛽 decay half-life of 150Nd and a search for 0ν𝛽𝛽 decay processes with the full exposure from the NEMO-3 detector”, Phys. Rev. D, 94. 072003.1-19.Oct.(2016). https://doi.org/10.1103/PhysRevD.94.072003
[ 23 ] Stefánik, D., Dvornický, R., Šimkovic, F., and Vogel, P., “Reexamining the light neutrino exchange mechanism of the 0𝜈𝛽𝛽 decay with left- and right-handed leptonic and hadronic currents”, Phys. Rev. C, 92. 055502.1-15. Nov.2015.