Fabrication of gas sensor based on p-type ZnO nanorods at room temperature under UV-LED illumination.
DOI: 427 Downloads 8061 Views
Author(s)
Abstract
In the present study, the use of ZnO nanorods sensor under the irradiation of 400 nm UV-LED illumination at room temperature was tested. The non-intentionally C-doped flower-like zinc oxide (ZnO) nanorods were synthesized through a chemical method at low temperature (60–65 °C). The hexagonal wurtzite phase of ZnO was confirmed by X-ray diffraction (XRD). The samples were too characterized using SEM, EDX, TEM, XPS, BET and UV-Vis spectroscopy. The results show that the ZnO nanorods behave as a p-type sensor with a high response and reversibility towards ethanol and ammonia and it is an attractive chemical sensing material.
Keywords
ZnO nanorods; C-doped; sensor response; ethanol; ammonia.
Cite this paper
P.M.Perillo, D.F.Rodríguez,
Fabrication of gas sensor based on p-type ZnO nanorods at room temperature under UV-LED illumination.
, SCIREA Journal of Materials.
Volume 2, Issue 1, February 2017 | PP. 1-15.
References
[ 1 ] | Ch. Jin, S. Park, H. Kim, Ch. Lee, Ultrasensitive multiple networked Ga2O3-core/ZnO-shell nanorod gas sensors, Sens. and Actuat. B 161, Issue 1, (2012), 223–228. |
[ 2 ] | I. M. Szilágyiei, A. L. Tóth, J. Madarász, G. Pokol, Gas sensing selectivity of hexagonal and monoclinic WO3 to H2S, Solid State Sciences, Vol. 12, Issue 11 (2010) 1857–1860. |
[ 3 ] | M.B. Rahmani, S.H. Keshmiri, J. Yu, A.Z. Sadek, L. Al-Mashat, A. Moafi, K. Latham, Y.X. Li, W. Wlodarski, K. Kalantar-zadeh, Gas sensing properties of thermally evaporated lamellar MoO3 Sens. Actuat. B 145, Issue 1, (2010) 13–19. |
[ 4 ] | Ch-J. Chang , Ch-Y. Lin, J-K. Chen, M-H. Hsu, Ce-doped ZnO nanorods based low operation temperature NO2 gas sensors, Ceram. Intern. 40 (7) B, (2014) 10867–10875. |
[ 5 ] | Y. Chen, X. Li, X. Li, J. Wang, Zh. Tang UV activated hollow ZnO microspheres for selective ethanol sensors at low temperatures, Sens. Actuat. B 232, (2016) 158−164. |
[ 6 ] | S. Santra, P.K. Guha, S.Z. Ali, P. Hiralal, H.E. Unalan, J.A. Covington, G.A.J. Amaratunga, W.I. Milne, J.W. Gardner, F. Udrea, ZnO nanowires grown on SOI CMOS substrate for ethanol sensing, Sens. Actuat. B 146, (2010) 559−565. |
[ 7 ] | P.M. Perillo, M.N.Atia, D.F. Rodríguez, Effect of the reaction conditions on the formation of the ZnO nanostructures, Phys. E 85, (2017) 185-192. |
[ 8 ] | D. F. Rodríguez and P. M. Perillo, Temperature Effect on the Growth of TiO2 Nanotubes, Advanced Science, Engineering and Medicine Vol. 6, N°3, (2014) 253-256. |
[ 9 ] | F.J.Sheini, D.S.Joag, M. A. More, Electrochemical synthesis of Sn doped ZnO nanowires on zinc foil and their field emission Studies, Thin solid films 519 (2010) 184–189. |
[ 10 ] | J. Yang, Y.Wang, J. Kong, H. Jia, Zh.Wang, Synthesis of ZnO nanosheets via electrodeposition method and their optical properties, growth mechanism, Opt. Mater. 46 (2015) 179–185. |
[ 11 ] | K. Edalati, A. Shakiba, J. Vahdati-Khaki, S M. Zebarjad, Low-temperature hydrothermal synthesis of ZnO nanorods: Effects of zinc salt concentration, various solvents and alkaline mineralizers, Mater. Res. Bull. 74 (2016) 374–379. |
[ 12 ] | J. Kong, Z. Rui, H .Ji, Y. Tong, Facile synthesis of ZnO/SnO2 hetero nanotubes with enhanced electrocatalytic property, Catal. Today 258, 1 (2015) 75–82. |
[ 13 ] | S. Öztürk, N. Kılınç, Z.Z. Öztürk, Fabrication of ZnO nanorods for NO2 sensor applications: Effect of dimensions and electrodeposition, J.of Alloys and Comp.581, (2013), 196–201. |
[ 14 ] | Z.S. Hosseini, A. Mortezaali, A. Iraji zad , S. Fardindoost, Sensitive and selective room temperature H2S gas sensor based on Au sensitized vertical ZnO nanorods with flower-like structures, J.Alloy Compd. 628 (2015) 222–229. |
[ 15 ] | V.Galstyan, E.Comini, C.Baratto, G.Faglia, G.Sberveglieri, Nanostructured ZnO chemical gas sensors, Ceram. Intern. 41 (2015) 14239−14244. |
[ 16 ] | D.C. Look Recent advances in ZnO materials and devices, Materials Science and Engineering: B Volume 80, Issues 1–3, (2001), 383–387. |
[ 17 ] | Nickel N H and Terukov E (ed) 2005 Zinc Oxide—A Material for Micro- and Optoelectronic Applications (Netherlands:Springer), 44–45. |
[ 18 ] | C. Jagadish and S. J. Pearton (ed) 2006 Zinc Oxide Bulk, Thin Films, and Nanostructures (New York: Elsevier) 109–114. |
[ 19 ] | Ren-Yu Tian and Yu-Jun Zhao, The origin of p-type conduction in„P, N...codoped ZnO, J. App. Phy. 106 (2009) 43707-43713. |
[ 20 ] | A. S. Alshammari, L. Chi, X. Chen, A. Bagabas, D. Kramer,A. Alromaeha and Z. Jiang, Visible-light photocatalysis on C-doped ZnO derived from polymer-assisted pyrolysis, RSC Advances 2015, 5, 27690-27698. |
[ 21 ] | X. Nie, B. Zhang , J. Wang, L. Shi, Z .Di, Q. Guo, Room-temperature ferromagnetism in p-type nitrogen-doped ZnO films, Mat. Lett. 161, (2015), 355–359. |
[ 22 ] | H. Pan, J. B. Yi, L. Shen, R. Q. Wu, J. H. Yang, J. Y. Lin, Y. P. Feng, J. Ding, L. H. Van, and J. H. Yin, Room-Temperature Ferromagnetism in Carbon-Doped ZnO, Phys. Rev. Lett. 99, (2007) 127201. |
[ 23 ] | J. Zhaia, L. Wang, D, Wang, Y. Lin, D. He, T .Xie, UV-illumination room-temperature gas sensing activity of carbon-doped ZnO microspheres, Sens. Actuat.B 161 (2012) 292–297. |
[ 24 ] | S. Cho, J-W. Jang, J. Sung Lee and K-H Lee, Carbon-doped ZnO nanostructures synthesized using vitamin C for visible light photocatalysis CrystEngComm, 2010,12, 3929-3935 |
[ 25 ] | Y-G. Lin, Y.-K. Hsu, Y-Ch. Chen, Li-Ch. Chen, S-Y. Chen and K-H. Chen, Visible-light-driven photocatalytic carbon-doped porous ZnO nanoarchitectures for solar water-splitting, Nanoscale, 2012, 4, 6515-6519. |
[ 26 ] | O. Haibo, H.J. Feng, Li Cuiyan , C. Liyun, F. Jie, Synthesis of carbon doped ZnO with a porous structure and its solar-light photocatalytic properties, Mat. Lett. 111, (2013) 217–220. |
[ 27 ] | N.S. Ramgir, M. Ghosh, P. Veerender, N. Datta, M. Kaur, D.K. Aswal, S.K. Gupta, Growth and gas sensing characteristics of p- and n-type ZnO nanostructures, Sensors and Actuators B: Chemical 156 (2011) 875-880. |
[ 28 ] | K. Diao, M. Zhou, J. Zhang, Y. Tang, Sh. Wang, X. Cui, High response to H2S gas with facile synthesized hierarchical ZnO microstructures, Sens. Actuat. B: 219 (2015) 30–37. |
[ 29 ] | P. Bindu, S. Thomas, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis, J Theor. Appl. Phys. 8 (2014) 123–134. |
[ 30 ] | D.K.Mishra, J.Mohapatra, M.K.Sharma, R.Chattarjee, S.K.Singh, Sh.Varma, S.N. Behera, S.K.Nayak, P.Entel, Carbon doped ZnO: Synthesis, characterization and interpretation, J. Magn. Magn. Mat.329 (2013) 146–152. |
[ 31 ] | K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems, Pure Appl. Chem. 57 (4) (1985) 603–619. |
[ 32 ] | Y. Ren, L. Yanga, L. Wang, T. Xu, G. Wu, H. Wu, Facile synthesis, photoluminescence properties and microwave absorption enhancement of porous and hollow ZnO spheres, Powder Techn. 281 (2015) 20–27. |
[ 33 ] | J.Tauc, R.Grigorovici and A.Vancu, Optical Properties and Electronic Structure of Amorphous Germanium, Phys. Status Solidi (b) 15, Issue 2, (1966) 627–637. |
[ 34 ] | F. Ahimou, C.J.P. Boonaert, Y. Adriaensen, P. Jacques, P. Thonart, M. Paquot, P.G. Rouxhet, XPS analysis of chemical functions at the surface of Bacillus subtilis, J.Colloid Interface Sci. 309 (2007) 49–55. |
[ 35 ] | S.K. Chaudhuri, M. Ghosh, D. Das, A.K. Raychaudhuri, Probing defects in chemically synthesized ZnO nanostructures by positron annihilation and photoluminescence spectroscopy, J. Appl. Phys., 108 (2010) 064319 |