CO2 capture-induced electrolytes using tertiary diamines

Volume 5, Issue 2, April 2020     |     PP. 12-29      |     PDF (1166 K)    |     Pub. Date: May 10, 2020
DOI:    217 Downloads     6096 Views  

Author(s)

Eri Yoshida, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Japan

Abstract
With the aim of early reducing global warming, CO2 capture-induced electrolytes were created using tertiary diamines of N,N,N’,N’-tetramethylethylenediamine (TM-Et), N,N,N’,N’-tetramethyl-1,3-propanediamine (TM-Pr), N,N,N’,N’-tetramethyl-1,6-hexanediamine (TM-Hex), bis(2-dimethylaminoethyl) ether (BDM-Ee), N,N’-dimethylpiperazine (DM-Pip), 1,4-diazabicyclo[2.2.2]octane (DABCO), and hexamethylenetetramine (HMT). A 13C NMR analysis, coupled with viscosity measurements revealed that the electrolytes were obtained by the diamines capturing carbonic acid generated by CO2 dissolving in water and produced through the formation of the diammonium carbonate, followed by the transformation into the bicarbonate. The electroconductivity (EC) of the electrolytes was independent of the counter anions and dependent only on the protonated diamine concentration. The electrolytes were more effectively formed at high temperature, despite a decrease in the CO2 solubility in water. The basicity and structure of the diamines also affected the EC. TM-Et, DM-Pip, and DABCO that show a low basicity and have two methylenes between the N atoms, produced only half of the EC for the highly basic TM-Pr, TM-Hex, and BDM-Ee based on formation of an intramolecular five-membered ring involving a proton through hydrogen bonding. On the other hand, HMT produced no EC due to its very low basicity. The electrolyte of the diammonium bicarbonate was transformed into the carbonate by introducing Ar. However, this transformation was reversed by introducing CO2 again, suggesting the repeatable use of the electrolytes.

Keywords
CO2 capture, tertiary diamines, electrolytes, carbonic acid, electroconductivity, bicarbonate, carbonate

Cite this paper
Eri Yoshida, CO2 capture-induced electrolytes using tertiary diamines , SCIREA Journal of Chemistry. Volume 5, Issue 2, April 2020 | PP. 12-29.

References

[ 1 ] Coumou, D, Rahmstorf, S.A., A decade of weather extremes. Nature Clim. Change, 2012, 2, 491-496.
[ 2 ] Flannigan, M, Stocks, B., Turetsky, M., Wotton, M., Impacts of climate change on fire activity and fire management in the circumboreal forest. Global Change Biol., 2009, 15, 549-560.
[ 3 ] Brown, B.E., Coral bleaching: causes and consequences. Coral Reefs, 1997, 16, Suppl., S129-S138.
[ 4 ] Hoegh-Guldberg, O., Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshwater Res., 1999, 50, 839-866.
[ 5 ] Doney, S.C., Ruckelshaus, M., Duffy, J.E., Barry, J.P., Chan, F., English, C.A., Galindo, H.M., Grebmeier, J.M., Hollowed, A.B., Knowlton, N., Polovina, J., Rabalais, N.N., Sydeman, W.J., Talley, L.D., Climate change impacts on marine ecosystems. Ann. Rev. Mar. Sci., 2012, 4, 11-37.
[ 6 ] Burke, M., Hsiang, S.M., Miguel, E., Global non-linear effect of temperature on economic production. Nature, 2015, 527, 235-239.
[ 7 ] Marchetti, C., On geoengineering and the CO2 problem. Clim. Change, 1977, 1, 59-68.
[ 8 ] Kazama, S., Teramoto, T., Haraya, K., Carbon dioxide and nitrogen transport properties of bis(phenyl)fluorene-based cardo polymer membranes. J. Membrane Sci., 2002, 207, 91-104.
[ 9 ] Vonshak, A., Guy, R., Photoadaptation, photoinhibition and the blue-green alga, Spirulina platensis grown outdoors. Plant: Cell Environ., 1992, 15, 613-616.
[ 10 ] Laws, W.A., Berning, J.L., A study of the energetics and economics of microalgal mass culture with the marine chlorophyte Tetraselmis suecica: Implications for use of power plant stack gases. Biotechnol. Bioeng., 1991, 37, 936-947.
[ 11 ] Könneke, M., Schubert, D.M., Brown, P.C., Hügler, M., Standfest, S., Schwander, T., von Borzyskowski, L.S., Erb, T.J., Stahl, D.A., Berg, I.A., Ammonia-oxidizing archaea use the most energy efficient aerobic pathway for CO2 fixation. Proceedings of the National Academy of Sciences of the United State of America. PNAS, 2014, 111, 8239-8244.
[ 12 ] Samuelov, N.S., Lamed, R., Lowe, S., Zeikus, J.G., Influence of CO2-HCO3- levels and pH on growth, succinate production, and enzyme activities of anaerobiospirillum succiniciproducens. Appl. Environ. Microbiol., 1991, 57, 3013-3019.
[ 13 ] Kikuchi, S., Yoshida, S., Sugawara, Y., Yamada, W., Cheng, H., Fukui, K., Sekine, K., Iwakura, I., Ikeno, T., Yamada, T., Silver-catalyzed carbon dioxide incorporation and rearrangement on propargylic derivatives. Bull. Chem. Soc. Jpn., 2011, 84, 698-717.
[ 14 ] Inoue, S., Tsuruta, T., Furukawa, J., Preparation of optically active poly(propylene oxide) by asymmetric induction. Makromol. Chem., 1962, 53, 215-218.
[ 15 ] Koinuma, H., Hirai, H., Copolymerization of carbon dioxide and oxetane. Makromol. Chem., 1977, 178, 241-246.
[ 16 ] Soga, K., Hosoda, S., Tazuke, Y., Ikeda, S., Copolymerization of carbon dioxide and ethyl vinyl ether. J. Polym. Sci., Polym. Lett. Ed., 1975, 13, 265-268.
[ 17 ] Tsuda, T., Maruta, K., Kitaike, Y., Nickel(0)-catalyzed alternating copolymerization of carbon dioxide with diynes to poly(2-pyrones). J. Am. Chem. Soc., 1992, 114, 1498-1499.
[ 18 ] Kihara, N., Endo, T., Catalytic activity of various salts in the reaction of 2,3-epoxypropyl phenyl ether and carbon dioxide under atmospheric pressure. J. Org. Chem., 1993, 58, 6198-6202.
[ 19 ] Aresta, M., Dibenedetto, A., Carone, M., Colonna, T., Fragale, C., Production of biodiesel from macroalgae by supercritical CO2 extraction and thermochemical liquefaction. Environ. Chem. Lett., 2005, 3, 136-139.
[ 20 ] Marrone, C., Poletto, M., Reverchon, E., Stassi, A., Almond oil extraction by supercritical CO2: experiments and modelling. Chem. Eng. Sci., 1998, 53, 3711-3718.
[ 21 ] van der Kraan, M., Fernandez Cid, M.V., Woerlee, G.F., Veugelers, W.J.T., Witkamp, G.J., Dyeing of natural and synthetic textiles in supercritical carbon dioxide with disperse reactive dyes. J. Supercrit. Fluids, 2007, 40, 470-476.
[ 22 ] Sicardi, S., Manna, L., Banchero, M., Diffusion of disperse dyes in PET films during impregnation with a supercritical fluid. J. Supercrit. Fluids, 2000, 17, 187-194.
[ 23 ] Yan, Q., Zhou, R., Fu, C., Zhang, H., Yin, Y., Yuan, J., CO2-responsive polymeric vesicles that breathe. Angew. Chem. Int. Ed. 2011, 50, 4923-4927.
[ 24 ] Pinaud, J., Kowal, E., Cunningham, M., Jessop, P., 2-(Diethyl)aminoethyl methacrylate as a CO2-switchable comonomer for the preparation of readily coagulated and redispersed polymer latexes. ACS Macro Lett., 2012, 1, 1103-1107.
[ 25 ] Yoshida, E., CO2-responsive behavior of polymer giant vesicles supporting hindered amine. Colloid Polym. Sci., 2019, 297, 661-666.
[ 26 ] MacDowell, N., Florin, N., Buchard, A., Hallett, J., Galindo, A., Jackson, G., Adjiman, C.S., Williams, C.K., Shah, N., Fennell, P., An overview of CO2 capture technologies. Energy Environ. Sci., 2010, 3, 1645-1669.
[ 27 ] Lashaki, M.J., Khiavi, S., Sayari, A., Stability of amine-functionalized CO2 adsorbents: a multifaced puzzle. Chem. Soc. Rev., 2019, 48, 3320-3405.
[ 28 ] Ding, M., Flaig, R.W., Jiang, H., Yaghi, O.M., Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chem. Soc. Rev., 2019, 48, 2783-2828.
[ 29 ] Zhang, X., Zhang, X., Dong, H., Zhao, Z., Zhang, S., Huang, Y., Carbon capture with ionic liquids: overview and progress. Energy Environ. Sci., 2012, 5, 6668-6681.
[ 30 ] Bae, T., Hudson, M.R., Mason, J.A., Queen, W.L., Dutton, J.J., Sumida, K., Micklash, K.J., Kaye, S.S., Brown, C.M., Long, J.R., Evaluation of cation-exchanged zeolite adsorbents for post-combustion carbon dioxide capture. Energy Environ. Sci., 2013, 6, 128-138.
[ 31 ] Ichikawa, S., Seki, T., Tada, M., Iwasawa, Y., Ikariya, T., Amorphous nano-structured silicas for high-performance carbon dioxide confinement. J. Mater. Chem., 2010, 20, 3163-3165.
[ 32 ] Paura, E.N.C., da Cunha, W.F., Roncaratti, L.F., Martins, J.B.L., e Silva, G.M., Gargano, R., CO2 adsorption on single-walled boron nitride nanotubes containing vacancy defects. RSC Adv., 2015, 5, 27412-27420.
[ 33 ] Hartono, A., Rennemo, R., Awais, M., Vevelstad, S.J., Brakstad, O.G., Kim, I., Knuutila, H.K., Characterization of 2-piperidineethanol and 1-(2-hydroxyethyl)pyrrolidine as strong bicarbonate forming solvents for CO2 capture. Int. J. Greenhouse Gas Control, 2017, 63, 260-271.
[ 34 ] Xiao, M., Cui, D., Zou, L., Yang, Q., Gao, H., Liang, Z., Experimental and modeling studies of bicarbonate forming amines for CO2 capture by NMR spectroscopy and VLE. Sep. Purif. Technol., 2020, 234, 116097.
[ 35 ] Wei, Z., Lin, Z., Niu, H., He, H., Ji, Y., Simultaneous desulfurization and denitrification by microwave reactor with ammonium bicarbonate and zeolite. J. Hazard. Mater., 2009, 162, 837-841.
[ 36 ] Aasanuma, N., Harada, M., Nogami, M., Suzuki, K., Kikuchi, T., Tomiyasu, H., Ikeda, Y., Anodic dissolution of UO2 pellet containing simulated fission products in ammonium carbonate solution. J. Nuclear Sci. Technol., 2006, 43, 255-262.
[ 37 ] Voskian, S., Hatton, T.A., Faradaic electro-swing reactive adsorption for CO2 capture. Energy Environ. Sci., 2019, 12, 3530-3547.
[ 38 ] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (1994-2020 ACD/Labs). Basicity in SciFinder.